Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
1.
Mol Genet Metab ; 142(1): 108454, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38603816

RESUMO

BACKGROUND: Cystine-depleting therapy in nephropathic cystinosis is currently monitored via the white blood cell cystine assay, although its application and usefulness are limited by practical and technical issues. Therefore, alternative biomarkers that are widely available, more economical and less technically demanding, while reliably reflecting long-term adherence to cysteamine treatment, are desirable. Recently, we proposed chitotriosidase enzyme activity as a potential novel biomarker for the therapeutic monitoring of cysteamine treatment in cystinosis. In this study, we aimed to validate our previous findings and to confirm the value of chitotriosidase in the management of cystinosis therapy. MATERIALS & METHODS: A retrospective study was conducted on 12 patients treated at the National Institutes of Health Clinical Center and followed up for at least 2 years. Plasma chitotriosidase enzyme activity was correlated with corresponding clinical and biochemical data. RESULTS: Plasma chitotriosidase enzyme activity significantly correlated with WBC cystine levels, cysteamine total daily dosage and a Composite compliance score. Moreover, plasma chitotriosidase was a significant independent predictor for WBC cystine levels, and cut-off values were established in both non-kidney transplanted and kidney transplanted cystinosis patients to distinguish patients with a good versus poor compliance with cysteamine treatment. Our observations are consistent with those of our previous study and validate our findings. CONCLUSIONS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients. SYNOPSIS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.

2.
J Biol Chem ; 300(4): 107125, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432638

RESUMO

Cyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of ß-turn nucleation on cyclotide oxidative folding. Two types of ß-turn mimics were grafted into kalata B1, individually replacing each of the four ß-turns in the folded cyclotide. Insertion of d-Pro-Gly into loop 5 was beneficial to the folding of both cyclic kB1 and a linear form of the peptide. The linear grafted analog folded four-times faster in aqueous conditions than cyclic kB1 in optimized conditions. Additionally, the cyclic analogue folded without the need for redox agents by transitioning through a native-like intermediate that was on-pathway to product formation. Kalata B1 is from the Möbius subfamily of cyclotides. Grafting d-Pro-Gly into loop 5 of cyclotides from two other subfamilies also had a beneficial effect on folding. Our findings demonstrate the importance of a ß-turn nucleation site for cyclotide oxidative folding, which could be adopted as a chemical strategy to improve the in vitro folding of diverse cystine-rich peptides.

3.
Brain Behav Immun ; 118: 275-286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447884

RESUMO

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Assuntos
Doenças Neuroinflamatórias , Neoplasias Pancreáticas , Camundongos , Animais , Encéfalo , Inflamação , Hipocampo
4.
Biochem Pharmacol ; : 116175, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552850

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.

6.
J Colloid Interface Sci ; 663: 554-565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428113

RESUMO

Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.


Assuntos
Hidrogéis , Polietilenoglicóis , Nanogéis , Hidrogéis/química , Polietilenoimina
7.
J Biol Chem ; 300(4): 107203, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508311

RESUMO

We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.

8.
Folia Med (Plovdiv) ; 66(1): 80-87, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38426469

RESUMO

AIM: Obesity and metabolic syndrome are becoming more prevalent these days. In addition, we know that urinary stone disease is also on the rise. In this study, we wanted to examine if body mass index (BMI) had a negative effect on the stone disease by evaluating 24-hour urinalysis in stone patients and recurrence rates in our region.


Assuntos
Oxalato de Cálcio , Cálculos Urinários , Humanos , Índice de Massa Corporal , Obesidade/complicações
9.
Microbiol Spectr ; 12(4): e0408123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415659

RESUMO

Microbial reduction of organic disulfides affects the macromolecular structure and chemical reactivity of natural organic matter. Currently, the enzymatic pathways that mediate disulfide bond reduction in soil and sedimentary organic matter are poorly understood. In this study, we examined the extracellular reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) by Shewanella oneidensis strain MR-1. A transposon mutagenesis screen performed with S. oneidensis resulted in the isolation of a mutant that lost ~90% of its DTNB reduction activity. Genome sequencing of the mutant strain revealed that the transposon was inserted into the dsbD gene, which encodes for an oxidoreductase involved in cytochrome c maturation. Complementation of the mutant strain with the wild-type dsbD partially restored DTNB reduction activity. Because DsbD catalyzes a critical step in the assembly of multi-heme c-type cytochromes, we further investigated the role of extracellular electron transfer cytochromes in organic disulfide reduction. The results indicated that mutants lacking proteins in the Mtr system were severely impaired in their ability to reduce DTNB. These findings provide new insights into extracellular organic disulfide reduction and the enzymatic pathways of organic sulfur redox cycling.IMPORTANCEOrganic sulfur compounds in soils and sediments are held together by disulfide bonds. This study investigates how Shewanella oneidensis breaks apart extracellular organic sulfur compounds. The results show that an enzyme involved in the assembly of c-type cytochromes as well as proteins in the Mtr respiratory pathway is needed for S. oneidensis to transfer electrons from the cell surface to extracellular organic disulfides. These findings have important implications for understanding how organic sulfur decomposes in terrestrial ecosystems.


Assuntos
Ecossistema , Shewanella , Ácido Ditionitrobenzoico/metabolismo , Oxirredução , Shewanella/genética , Shewanella/metabolismo , Citocromos/metabolismo , Enxofre/metabolismo , Dissulfetos , Compostos de Enxofre/metabolismo
10.
Cell Metab ; 36(4): 762-777.e9, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309267

RESUMO

Although the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS). ROS-induced ferroptosis is critical for tumor growth in the absence of common ferroptosis inducers; strikingly, loss of PHLDA2 abrogates ROS-induced ferroptosis and promotes tumor growth but has no obvious effect in normal tissues in both immunodeficient and immunocompetent mouse tumor models. These data demonstrate that PHLDA2-mediated PA peroxidation triggers a distinct ferroptosis response critical for tumor suppression and reveal that PHLDA2-mediated ferroptosis occurs naturally in vivo without any treatment from ferroptosis inducers.


Assuntos
Neoplasias , Animais , Camundongos , Modelos Animais de Doenças , Peroxidação de Lipídeos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
Actas urol. esp ; 48(1): 11-18, Ene-Febr. 2024. tab, ilus
Artigo em Inglês, Espanhol | IBECS | ID: ibc-229102

RESUMO

La nefrolitiasis es una enfermedad urológica de prevalencia mundial asociada a una importante morbilidad y malestar para el paciente. El tratamiento actual de los cálculos renales se basa en intervenciones quirúrgicas y farmacológicas. Aunque la cirugía puede ser necesaria en casos determinados, el tratamiento farmacológico es una opción más asequible, fácilmente disponible y menos invasiva para el paciente. Se realizó una revisión exhaustiva para resumir la bibliografía disponible sobre las estrategias de manejo farmacológico de los principales tipos de litiasis: oxalato cálcico, fosfato cálcico, ácido úrico, estruvita y cistina. La regulación de factores como el pH urinario, la cristalización de los cálculos y los trastornos metabólicos del paciente que precipitan el desarrollo y el crecimiento de los cálculos es fundamental para estos enfoques terapéuticos. Esta revisión hace hincapié en las opciones farmacológicas disponibles para el tratamiento según el tipo de litiasis y destaca la importancia de un tratamiento médico personalizado para cada paciente, aspecto que debe ser tenido en cuenta por todos los médicos. (AU)


Nephrolithiasis is a globally prevalent urologic condition associated with significant morbidity and patient discomfort. Current management of kidney stones includes both surgical and pharmacologic interventions. Though surgery may be necessary under certain circumstances, pharmacologic treatment is a more affordable, readily available, and a less invasive option for patients. A comprehensive scoping review was conducted to summarize the available literature on the pharmacologic strategies for managing the predominant stone types including calcium oxalate, calcium phosphate, uric acid, struvite, and cystine stones. Central to these therapeutic approaches is the regulation of factors such as urine pH, stone crystallization, and patient metabolics that precipitate stone development and growth. This review highlights the pharmacological options available for treating each kidney stone type, emphasizing the importance of patient tailored medical management that should be considered by every physician. (AU)


Assuntos
Humanos , Nefrolitíase/tratamento farmacológico , Nefrolitíase/prevenção & controle , Cálculos Renais/tratamento farmacológico , Concentração de Íons de Hidrogênio
12.
Artigo em Inglês | MEDLINE | ID: mdl-38357956

RESUMO

BACKGROUND: Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE: In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS: We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS: The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION: Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.

13.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383421

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais (Psicologia) , Inflamação/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Neurotóxicas/metabolismo , Glutamatos/metabolismo , Ferro/metabolismo
14.
Pediatr Nephrol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393360

RESUMO

Gastrointestinal (GI) sequelae, such as vomiting, hyperacidity, dysphagia, dysmotility, and diarrhea, are nearly universal among patients with nephropathic cystinosis. These complications result from disease processes (e.g., kidney disease, cystine crystal accumulation in the GI tract) and side effects of treatments (e.g., cysteamine, immunosuppressive therapy). GI involvement can negatively impact patient well-being and jeopardize disease outcomes by compromising drug absorption and patient adherence to the strict treatment regimen required to manage cystinosis. Given improved life expectancy due to advances in kidney transplantation and the transformative impact of cystine-depleting therapy, nephrologists are increasingly focused on addressing extra-renal complications and quality of life in patients with cystinosis. However, there is a lack of clinical data and guidance to inform GI-related monitoring, interventions, and referrals by nephrologists. Various publications have examined the prevalence and pathophysiology of selected GI complications in cystinosis, but none have summarized the full picture or provided guidance based on the literature and expert experience. We aim to comprehensively review GI sequelae associated with cystinosis and its treatments and to discuss approaches for monitoring and managing these complications, including the involvement of gastroenterology and other disciplines.

15.
Pharmacol Res ; 200: 107075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228255

RESUMO

Claudin-5 (CLDN5) is an essential component of tight junctions (TJs) and is critical for the integrity of the blood-brain barrier (BBB), ensuring homeostasis and protection from damage to the central nervous system (CNS). Currently, many researchers have summarized the role and mechanisms of CLDN5 in CNS diseases. However, it is noteworthy that CLDN5 also plays a significant role in tumor growth and metastasis. In addition, abnormal CLDN5 expression is involved in the development of respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications. This paper aims to review the structure, expression, and regulation of CLDN5, focusing on its role in tumors, including its expression and regulation, effects on malignant phenotypes, and clinical significance. Furthermore, this paper will provide an overview of the role and mechanisms of CLDN5 in respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications.


Assuntos
Doenças do Sistema Nervoso Central , Diabetes Mellitus , Cardiopatias , Enteropatias , Neoplasias , Humanos , Claudina-5/genética , Claudina-5/metabolismo , Neoplasias/genética
16.
Proteomics Clin Appl ; : e2300035, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196151

RESUMO

PURPOSE: This study was aimed to analyze serum amino acid metabolite profiles in frailty patients, gain a better understanding of the metabolic mechanisms in frailty, and assess the diagnostic value of metabolomics-based biomarkers of frailty. EXPERIMENTAL DESIGN: This study utilized the ultra-performance liquid chromatography tandem mass spectrometry to examine amino acids associated with frailty. Additionally, we employed multivariate statistical methods, metabolomic data analysis, receiver operating characteristic (ROC) curve analysis, and pathway enrichment analysis. RESULTS: Among the assayed amino acid metabolites, we identified biomarkers for frailty. ROC curve analysis for frailty diagnosis based on the modified Fried's frailty index showed that the areas under ROC curve of tryptophan, phenylalanine, aspartic acid, and combination were 0.775, 0.679, 0.667, and 0.807, respectively. ROC curve analysis for frailty diagnosis based on Frail Scale showed that the areas under ROC curve of cystine, phenylalanine, and combination of amino acids (cystine, L-Glutamine, citrulline, tyrosine, kynurenine, phenylalanine, glutamin acid) were 0.834, 0.708, and 0.854 respectively. CONCLUSION AND CLINICAL RELEVANCE: In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty. CLINICAL SIGNIFICANCE: Frailty is a clinical syndrome, as a consequence it is challenging to identify at early course of the disease, even based on the existing frailty scales. Early diagnosis and appropriate patient management are the key to improve the survival and limit disabilities in frailty patients. Proven by the extensive laboratory and clinical studies on frailty, comprehensive analysis of metabolic levels in frail patients, identification of biomarkers and study of pathogenic pathways of metabolites contribute to the prediction and early diagnosis of frailty. In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty.

17.
Urolithiasis ; 52(1): 23, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189987

RESUMO

The primary aim of the present in vitro study is to analyze the chemical content of the bubbles occurring during the fragmentation of cystine stones with both the high-power and low-power holmium:YAG (Ho:YAG) lasers. The secondary aim is to discuss their clinical importance. Three types of human renal calculi calcium oxalate monohydrate (COM), cystine, and uric acid were fragmented with both low-power and high-power Ho:YAG lasers in separate experimental setups at room temperature, during which time it was observed whether gas was produced. After laser lithotripsy, a cloudy white gas was obtained, after the fragmentation of cystine stones only. A qualitative gas content analysis was performed with a gas chromatography-mass spectrometry (GC-MS) device. The fragments in the aqueous cystine calculi setup were dried and taken to the laboratory to be examined by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction analysis. No gas production was observed after fragmentation in the COM and uric acid stones. Free cystine, sulfur, thiophene, and hydrogen sulfide gas were produced by both low-power and high-power Ho:YAG laser lithotripsy of the cystine stones. In the SEM-EDX mapping analysis, a free cystine molecule containing 42.8% sulfur (S), 21% oxygen (O), 14.9% carbon (C), and 21% nitrogen (N) atoms was detected in the cystine stone experimental setup. The evidence obtained, which shows that hydrogen sulfide emerges in the gaseous environment during Ho:YAG laser fragmentation of cystine stones, indicates that caution is required to prevent the risk of in vivo production and toxicity.


Assuntos
Sulfeto de Hidrogênio , Cálculos Renais , Lasers de Estado Sólido , Litotripsia a Laser , Humanos , Cistina , Ácido Úrico , Oxalato de Cálcio , Hólmio , Litotripsia a Laser/efeitos adversos , Elétrons , Enxofre
18.
Transpl Immunol ; 83: 101993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224843

RESUMO

Cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by cystine buildup in various tissues, including the kidneys. Renal involvement is the primary manifestation, leading to end-stage renal disease (ESRD) if left untreated. Kidney transplantation (KT) in patients with cystinosis has significantly improved their prognosis for the disease outcome. Detailed reports on preoperative and Long-term postoperative management in these patients remain sparse. This report discusses the outcomes of two young adult patients of Middle Eastern descent with cystinosis who underwent KT. The first patient, diagnosed with infantile nephropathic cystinosis treated by cystine-depleting therapy, was operated by KT at the age of 18. The second patient, diagnosed with juvenile cystinosis, underwent transplantation at the age of 35 after being treated with hemodialysis. Our report describes detailed pre- and postoperative managements, including laboratory results, and pharmacological interventions. Both cases highlighted the varying clinical manifestations and disease severity between infantile and juvenile cystinosis. Pre-transplant conditions included renal dysfunction, growth retardation, secondary hyperparathyroidism, anemia, and extrarenal manifestations. Following KT, both patients experienced regained renal function, resolution of extrarenal complications, and normalization of laboratory parameters. Furthermore, both patients showed excellent postoperative outcomes with no acute rejection or allograft-related complications. KT is the treatment of choice for cystinosis patients with ESRD. Long-term follow-up post-transplantation is crucial to maintain good graft function. Further studies may elucidate optimal pre- and postoperative management protocols for this rare condition.


Assuntos
Cistinose , Falência Renal Crônica , Transplante de Rim , Síndrome Nefrótica , Adulto Jovem , Humanos , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/tratamento farmacológico , Transplante de Rim/efeitos adversos , Cistina/uso terapêutico
19.
J Pept Sci ; 30(2): e3542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697741

RESUMO

Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.


Assuntos
Insulina , Lactamas , Humanos , Insulina/química , Qualidade de Vida , Cistina , Dissulfetos/química
20.
Actas Urol Esp (Engl Ed) ; 48(1): 11-18, 2024.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38043680

RESUMO

Nephrolithiasis is a globally prevalent urologic condition associated with significant morbidity and patient discomfort. Current management of kidney stones includes both surgical and pharmacologic interventions. Though surgery may be necessary under certain circumstances, pharmacologic treatment is a more affordable, readily available, and a less invasive option for patients. A comprehensive scoping review was conducted to summarize the available literature on the pharmacologic strategies for managing the predominant stone types including calcium oxalate, calcium phosphate, uric acid, struvite, and cystine stones. Central to these therapeutic approaches is the regulation of factors such as urine pH, stone crystallization, and patient metabolics that precipitate stone development and growth. This review highlights the pharmacological options available for treating each kidney stone type, emphasizing the importance of patient tailored medical management that should be considered by every physician.


Assuntos
Cálculos Renais , Humanos , Cálculos Renais/tratamento farmacológico , Oxalato de Cálcio/metabolismo , Ácido Úrico , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...